1.0 Stormwater Manufactured Treatment Devices

Stormwater Manufactured Treatment Devices (MTDs) function as stormwater treatment devices before stormwater runoff is discharged off-site or to receiving water bodies, and may be incorporated into a series of water quality best management practices to remove pollutants from stormwater runoff. MTDs are not designed, or intended to store a volume of water for water quality treatment. When the storage of a water quantity volume is required, additional or separate BMPs must be implemented. MTD Pollutant removal efficiencies are variable and are highly dependent on storm size, influent pollutant concentrations, rainfall intensity and other factors.

Use MTDs that minimize the long term water quality impacts from stormwater runoff to the Maximum Extent Practicable (MEP). Use MTDs designed to filter and trap trash, sediment, totals suspended solids (TSS), oil and grease, metals, hydrocarbons and other pollutants. Provide MTDs that combine settling, filtration, and various biological processes into one controlled system.

MTDs are classified into three Types:

- **MTD Type 1 -** Separation Devices (Standard Stormwater MTD). Contains a sump for sediment deposition with a series of chambers, baffles or weirs to trap trash, oil, grease, and other contaminants.

- **MTD Type 2 -** Filtration Devices (Impaired Water Bodies, TMDL Requirements). Contains a sedimentation chamber and a filtering chamber. MTD Type 2 contains filter materials or vegetation to remove specific pollutants such as nitrogen, phosphorus, copper, lead, zinc, and bacteria.

- **MTD Type 3 -** Catch Basin Inserts (Limited Space). May contain filter media including polypropylene, porous polymers, treated cellulose, and activated carbon designed to absorb specific pollutants such as oil, grease, hydrocarbons, and heavy metals. MTD Type 3 must provide overflow features that do not reduce the original hydraulic capacity of the catch basin.

1.1 Design Criteria

MTDs are applicable for a maximum drainage area of 3.0 acres.

Size MTD Type 1 and MTD Type 2 to treat at a minimum the entire water quality event (WQE) with no bypass.

Use MTDs designed to treat the entire water quality event (WQE) with no by pass for a minimum 80% Total Suspended Solids (TSS) removal efficiency.

The WQE flow rate is a separate flow rate from the Level of Service (LOS) flow rate. In addition to meeting the required treatment efficiency for the WQE, the MTD must be capable of passing the specified LOS flow rate (i.e. 10-year storm event) without causing adverse hydraulic impact to upstream portions of the drainage system and without causing any re-suspension or scour of previously trapped pollutants, or the MTD may be required to be placed off-line.

Ensure site constraints (available right of way and available depth) allow the installation of a single MTD for design peak water quality flow rates up to 8 cfs. Additional MTDs may be required for water quality event flow rates greater than 8 cfs.
Ensure tail water conditions are accounted for in the MTD design.

When applicable, use MTDs designed to meet any other additional watershed, TMDL, or site-specific water quality requirements.

1.1.1 Water Quality Event (WQE) Design

Size MTDs to treat, at a minimum, the peak flow rate of the stormwater runoff from the **1.8-inch, 24-hour Type II storm event**, from the entire drainage area to the MTD. This is defined as the water quality event (WQE). When applicable, use the 1-year 24-hour storm hydrograph and input 1.8 inches as the rainfall depth when performing hydrologic modeling. This water quality event is distributed into the rainfall intensities in Table 1.

Table 1: Water Quality Event (WQE) Design Intensities

<table>
<thead>
<tr>
<th>Frequency</th>
<th>(i_{(t \geq 5 \text{ min})}) (in/hr)</th>
<th>(i_{(t \geq 10 \text{ min})}) (in/hr)</th>
<th>(i_{(t \geq 15 \text{ min})}) (in/hr)</th>
<th>(i_{(t \geq 30 \text{ min})}) (in/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Quality Design Storm 1.8 in 24-hr Type II storm event</td>
<td>2.16</td>
<td>1.93</td>
<td>1.74</td>
<td>1.34</td>
</tr>
</tbody>
</table>

When used as a stand-alone BMP that is not part of a treatment train, design MTDs to trap a minimum of 80% TSS based on annual loadings.

Where MTDs are not able to meet the annual 80% TSS removal efficiency, they can provide excellent pre-treatment in a series of water quality control BMPs or inlet to permanent pool detention basins or storm water wetlands. When used as a part of a treatment series, design MTDs to trap TSS based on annual loadings by particle class (clay, silt, small aggregate, sand, large aggregate). In this situation, the MTD is not required to trap 80% TSS on annual loadings, but the entire treatment series must trap 80% TSS based on annual loadings.

1.2 Materials

1.2.1 Material Design Specifications

- Use MTDs designed in accordance with the requirements of the latest **AASHTO LRFD Bridge Design Specifications**. Use MTDs with a HL-93 design live loading.

- Use Class 4000 concrete (minimum) for all MTD precast concrete elements.

- Use reinforcing bars conforming to the requirements of ASTM A706, Grade 60.

- Use welded wire fabric meeting the requirements of AASHTO M55 and AASHTO M221, ASTM A185, or ASTM A497.

- Ensure all materials, manufacturing, testing and product performance for precast concrete components and accessories are in accordance with AASHTO M199 and accepted by the Engineer.

1.2.2 Detailing Requirements

- Ensure the base slab and any required separation slab concrete is poured monolithically with the wall or a water-stop cast into the bottom for the joint to the wall.

- Use tongue and groove joints. Ensure the size and amount of sealant is in accordance with the
manufacturer's recommendations.

- Use an appropriate Steel manhole supplied by the manufacturer engraved with the unique MTD markings including the MTD Name and Model number.

1.2.3 Stormwater Manufactured Treatment Devices (MTDs) Type 1

Use MTD Type 1 (separation devices, also referred to as hydrodynamic separators) designed and sized to treat, at a minimum, the stormwater runoff from the applicable Water Quality Event (WQE) to prevent pollutants from being transported downstream.

Use MTD Type 1 as the standard Stormwater MTD for pollutant removal. Use MTD Type 1 that contains a sump for sediment deposition with a series of chambers, baffles or weirs to trap trash, oil, grease and other contaminants. MTD Type 1 may include a high flow bypass mechanism for rainfall events larger than the water quality event to prevent scouring and re-suspension of previously trapped pollutants.

MTD Type 1 not providing a high flow bypass mechanism must provide specific lab testing results verifying no re-suspension or scour of previously trapped pollutants during the Level of Service (LOS) design event for the MTD. Use MTD Type 1 with treatment elements or other upstream BMPs to remove trash, debris and other gross pollutants.

Use MTD Type 1 sized using acceptable scaling methodologies based on the results of laboratory testing with a maximum Hydraulic Loading Rate of \(25 \text{ gpm/sf} \) (0.0557 \(\text{cfs/sf} \)). MTDs scaled with higher Hydraulic Loading Rates must provide specific lab results verifying the required removal efficiency for the water quality event at the higher Hydraulic Loading Rate.

Use MTD Type 1 with the following properties:

- Designed for a minimum 80\% Total Suspended Solids (TSS) removal efficiency (ASTM D-3977-97 SSC) of coarse sand (125-micron-mean size, OK-110, or F-95 Silica Sand) for the peak flow rate from the water quality event for average influent concentrations ranging from 100 mg/L to 300 mg/L.

- Use settling, separation, swirling, and centrifugal force techniques to remove pollutants from storm water runoff.

- Contain no moving components that require an external power source such as electricity, gas powered engines or generators.

1.2.4 Stormwater Manufactured Treatment Devices (MTDs) Type 2

Use MTD Type 2 (filtration devices) designed and sized to treat, at a minimum, the stormwater runoff from the applicable Water Quality Event (WQE) to prevent pollutants from being transported downstream.

MTD Type 2 may be required for unique Project constraints such as impaired water body’s or TMDL watersheds. Use MTD Type 2 that contains a sedimentation chamber and a filtering chamber. Use MTD Type 2 that contains filter materials or vegetation to remove specific pollutants.

MTD Type 2 may include a high flow bypass mechanism for rainfall events larger than the water quality event to prevent scouring and re-suspension of previously trapped pollutants.

MTD Type 2 not providing a high flow bypass mechanism must provide specific lab testing results verifying no re-suspension or scour of previously trapped pollutants during the Level of Service (LOS) design event for the MTD. Use MTD Type 2 with treatment elements or other upstream BMPs to remove trash, debris and other gross pollutants.
Use MTD Type 2 sized using acceptable scaling methodologies based on the results of laboratory testing with a maximum Hydraulic Loading Rate of 25 gpm/sf (0.0557 cfs/sf). MTDs scaled with higher Hydraulic Loading Rates must provide specific lab results verifying the required removal efficiency for the water quality event at the higher Hydraulic Loading Rate.

Typical pollutant removal efficiencies are variable and are highly dependent on storm size, influent pollutant concentrations, rainfall intensity and other factors.

Use MTD Type 2 with the following properties:

- Designed for a minimum 80% Total Suspended Solids (TSS) removal efficiency (ASTM D-3977-97 SSC) of Sil-Co-Sil 106 ground silica, or the NJDEP particle size distribution with a D50 of 67 microns for the peak flow rate from the water quality event for average influent concentrations ranging from 100 mg/L to 300 mg/L.
- Use filtering techniques to remove pollutants from storm water runoff.
- Are capable of removing the pollutants of concern for the receiving water body.
- Have typical removal capability for the pollutant of concern from test results as shown in Table 2.

Table 2: MTD Type 2 Typical Pollutant Removal Capability

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>VALUE</th>
<th>PROPERTY</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Suspended Solids</td>
<td>≥ 80%</td>
<td>Metals</td>
<td>≥ 50%</td>
</tr>
<tr>
<td>Copper</td>
<td>≥ 50%</td>
<td>Lead</td>
<td>≥ 50%</td>
</tr>
<tr>
<td>Zinc</td>
<td>≥ 50%</td>
<td>Total Phosphorus</td>
<td>≥ 40%</td>
</tr>
<tr>
<td>Total Nitrogen</td>
<td>≥ 30%</td>
<td>Pathogens/Bacteria</td>
<td>≥ 75%</td>
</tr>
<tr>
<td>Oil & Grease</td>
<td>≥ 80%</td>
<td>Total Petroleum Hydrocarbons</td>
<td>≥ 80%</td>
</tr>
</tbody>
</table>

1.2.5 Stormwater Manufactured Treatment Devices (MTDs) Type 3

MTD Type 3 (catch basin inserts) may be required for unique Project constraints. Use MTD Type 3 designed for direct installation into storm drain catch basins. Use MTD Type 3 sized for the specific catch basin they are inserted. Use MTD Type 3 designed to treat stormwater runoff before it enters the primary storm sewer network or water quality treatment system.

Use MTD Type 3 that may contain filter media including polypropylene, porous polymers, treated cellulose, and activated carbon designed to absorb specific pollutants.

Use MTD Type 3 that provides overflow features that do not reduce the original hydraulic capacity of the catch basin. Pollutant removal efficiencies vary and are highly dependent on storm size, influent pollutant concentrations, rainfall intensity and other factors.

Use MTD Type 3 with the following properties:

- Designed for a minimum 80% Total Suspended Solids (TSS) removal efficiency (ASTM D-3977-97 SSC) for:
 - Coarse sand (125-micron-mean size, OK-110, or F-95 Silica Sand) with average influent concentrations ranging from 1,500 mg/L to 2,000 mg/L (6% target sediment to water concentration) using ASTM 7351 or equivalent laboratory testing methods.
o Street sweeping sediment load (average particle size of 200 micron) with average influent concentrations ranging from 24,000 mg/L to 26,000 mg/L (2.5% target sediment to water concentration) using ASTM 7351 or equivalent laboratory testing methods.

• Use separation, settling, swirling, centrifugal force, and filtering techniques to remove pollutants from stormwater runoff.

• Contain no moving components that require external power sources such as electricity, gas powered engines or generators.

• Are capable of removing the pollutants of concern for the receiving water body.

1.2.6 Quality Assurance

Provide MTDs Type 1 and 3 from a manufacturer listed on the most recent edition of *SCDOT Qualified Product List 78 Stormwater Manufactured Treatment Devices* in the appropriate category.

Provide MTD Type 2 from a manufacturer listed on the most recent edition of *Anderson Qualified Product List for Type 2 MTDs*:

Table 3: Approved MTD Type 2

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Treatment Device</th>
<th>Website</th>
<th>Contact Number</th>
</tr>
</thead>
</table>

At the time of delivery, provide the Engineer with a MTD packing list containing complete identification including, but not limited to, the following:

• Manufacturer’s name and location.
• Manufacturer’s telephone number and fax number.
• Manufacturer’s e-mail address and web address.
• MTD name, model, and/or serial number.
• Certification that the specific MTD meets the physical and performance criteria of this specification.

Ensure that each MTD delivered bears identification including, but not limited to, the following:

• MTD name, model, and/or serial number.
• MTD structure number.

1.3 Construction Requirements

1.3.1 Working Drawings

Submit Working Drawings and Certification that the MTD meets the requirements of this Specification to the Engineer. Ensure the Working Drawings contain at a minimum the project name, MTD name and model and/or serial number, MTD dimensioning, MTD and storm sewer invert elevations, installation
drawings, and instructions that completely describe the MTD. Do not perform any work on the MTD until the Working Drawings are accepted by the Engineer.

1.3.2 Site Preparation

Proper site preparation is essential for MTD installation. Prepare the site per the Plans, Specifications, and the manufacturer’s instructions.

1.3.3 Precast MTD Installation

Perform precast MTD excavation, bed preparation, backfilling and compaction as required on the Plans, Specifications, manufacturer’s instructions, or as directed by the Engineer for precast items.

Prepare and compact the MTD bed.

Ensure the elevation of the bedding material accommodates the elevation of all pipes connected to the MTD and the required MTD top elevation.

Place and level the MTD according the manufacturers requirements and to the elevations shown on the Working Drawings and Plans.

Install pipes and grout in place according to the storm sewer elevations, outfall elevations, pipe sizes, and the layout of the MTD as shown on the Plans. Ensure all lifting methods meet OSHA regulations.

Backfill and compact the MTD and all pipes as required on the Plans, Specifications, manufacturer’s instructions, or as directed by the Engineer.

1.3.4 Assembly

Assemble MTDs in accordance with the manufacturer’s written assembly instructions and in compliance with all OSHA, AASHTO, local, state, and federal codes and regulations. Erect shoring, bracing, or other devices necessary to achieve safe working conditions. Ensure the MTD bedding is protected from scour or movement during MTD installation.

Ensure that MTDs are designed and constructed in a manner that will not impact the integrity of the overall Project design and features such as grades, pedestrian facilities and other structures.

A manufacturer’s representative is required to provide specific MTD assembly instructions to the Contractor and verify the assembly for each of the manufacturer’s specific MTD according to the manufacturer’s design and assembly instructions.

Ensure proper site stabilization is achieved so MTDs function as designed. Do not use MTDs to trap eroded sediment from construction operations, unless the manufacturer has approved such use in writing. Install MTDs as the last stormwater runoff structures installed on site, or keep these MTDs off-line or isolated until final stabilization is achieved.

If MTDs are used for sediment control, provide written certification from the manufacturer that the device is clean and operating properly at the time a Notice of Termination is filed for the site.

1.3.5 Inspection and Maintenance

- Inspect and maintain all MTDs in accordance with the manufacturer’s written recommendations.
- Prepare specific maintenance requirements and maintenance schedules for each MTD.
- Inspect MTDs at least bi-annually to ensure that the MTD is working properly.
- Maintain MTDs as required to maximize pollutant removal.
• Keep a maintenance log to track all MTD inspections and maintenance with the quantities of materials removed from each MTD. Lack of maintenance is the most common cause of failure for MTDs.
• Remove accumulated sediment and other trapped pollutants when the MTD becomes full. Typical removal of pollutants requires the use of a vacuum truck.

1.3.6 Acceptance

Obtain Engineer acceptance and approval of all MTD installations. Obtain a letter from the manufacturer verifying the MTD assembly. When requested by the Engineer, ensure that a manufacturer’s representative is on-site to provide MTD assembly instructions or ensure the manufacturer has provided assembly training to the contractor for each manufacturer specific MTD.
ANDERSON COUNTY
SUBMITTAL POLICY FOR
STORMWATER MANUFACTURED TREATMENT DEVICES (MTDs)

1. General

This policy covers Stormwater Manufactured Treatment Devices (MTDs) for use as post construction water quality management. Only use Manufacturers for MTD Type 1 and Type 3 that appear on Qualified Products List 78 by the SCDOT Office of Materials and Research. Prior to approval on Anderson County projects, provide the ENGINEER with the following information from the Manufacturer for each specific Type of MTD (Type 1, Type 2, or Type 3):

- Written Quality Control program conforming to the requirements of the specification.
- Documentation of laboratory testing that quantifies the water quality performance of the MTD conforming to the requirements of the specification.
 - Independent 3rd party testing evaluator identification ((EPA ETV Program, ASTM, NJCAT, USGS, or other private, federal, state, local or university entities etc.) The evaluator cannot be the manufacturer.
 - Test facility name and location,
 - Signature of responsible person or party certifying the test results,
 - MTD manufacturer,
 - MTD name and model number tested,
 - Test ID number, and
 - Test date.
- Standard Details for each specific MTD showing MTD dimensions, estimated quantities and material specifications bearing the seal and signature of a South Carolina registered Professional Engineer meeting the requirements of the Anderson County Technical Specification for MTDs.
- Structural design calculations indicating design criteria, reinforcing steel schedule, and material specifications bearing the seal and signature of a South Carolina registered Professional Engineer meeting the requirements of the Anderson County Technical Specification for MTDs.
- Detailing Requirements
 - Base slab and any required separation slab concrete poured monolithically with the wall or a water-stop cast into the bottom for the joint to the wall.
 - Tongue and groove joints. Ensure the joint sealant meets all pipe specifications. Provide size and amount of joint sealant required.
 - Use an appropriate Heavy Duty steel manhole cover supplied by the manufacturer engraved with the unique MTD markings including the specific MTD Name and Model number. It is acceptable to vary the size, location of the manhole cover, and markings from typical manhole cover standards.
- Certification that the specific MTD performs to the minimum performance standards under the specific conditions stated in the Anderson County Technical Specification for MTDs.
- Instructions on the proper assembly and maintenance of the MTD.

When requested by Anderson County, the manufacture will provide field maintenance and cleaning recommendations based on MTD sizing models, MTD performance curves, MTD load reduction curves or from maintenance records on at least five installations showing a minimum of two years performance data in South Carolina or similar climatilogical area.
2. Acceptance

2.1. Complete the MTD Submittal Form supplied with this policy and provide the required information highlighted in the Form. This Form is used in the evaluation to ensure compliance with the MTD Technical Specifications. The information required in this Form is the minimum acceptable requirements for compliance with the MTD Technical Specification. Any deviations from this form are considered grounds for rejection of the submittal.

2.2. Provide third party test documentation and test data demonstrating 80% TSS removal is achieved for the specified Particle Size Distribution and particle concentration as specified in the MTD Technical Specification.

2.3. Provide a detailed drawing of the typical MTD supplied. Indicate bypass flow route around the treatment and storage area if this is provided. A drawing for each size of a typical MTD model is not required.

2.4. If no bypass flow route around the treatment and storage area is provided, submit third party test documentation demonstrating at what flow rate that re-suspension and loss of trapped sediments occurs for the test Particle Size Distribution. Include this flow rate in the table, chart, or graph required in Section 2.5.

2.5. Provide a table, chart or graph indicating the maximum flow rate where 80% TSS removal is achieved for the specified Particle Size Distribution and particle concentration for each specific MTD model that is supported by the third party test data.

2.6. Provide a table indicating the maximum flow rate where 80% TSS removal is achieved for the specified Particle Size Distribution and particle concentration and the maximum sediment storage capacity for each specific MTD Type 3 that is supported by the third party test data.

3. Identification

Mark each specific MTD produced and delivered by the Manufacturer, by either stamping or etching, with the following minimum information:

- MTD name, model, and/or serial number
- Project Specific Structure Number

4. Shipment

4.1 Submit a completed material certification form for each shipment to a project site. The form includes a statement certifying the products were manufactured, tested, and accepted in accordance with the MTD Technical Specification.

4.2 Do not ship MTDs from the fabrication plant/stockyard to project sites until they have met all acceptance criteria.
MTD SUBMITTAL FORM

Manufacturer Information

<table>
<thead>
<tr>
<th>Name:</th>
<th>Address/location:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web page:</td>
<td>Contact Name:</td>
</tr>
<tr>
<td>Telephone Number:</td>
<td>Fax Number:</td>
</tr>
<tr>
<td>e-mail address:</td>
<td></td>
</tr>
</tbody>
</table>

MTD Information (Submit a separate form for each specific MTD)

<table>
<thead>
<tr>
<th>Submittal Type: MTD Type 1</th>
<th>MTD Type 2</th>
<th>MTD Type 3</th>
</tr>
</thead>
</table>

Specific MTD Name:

- Written description of the Manufacturer’s Quality Control program: Yes ☐ No ☐
- Instructions on the proper assembly and maintenance of the MTD: Yes ☐ No ☐
- Certification that the MTD performs to the minimum performance standards under the specific conditions stated in the MTD specification: Yes ☐ No ☐
- Detail drawing for each MTD submitted signed by registered SC PE: Yes ☐ No ☐
- Structural design calculations for each MTD submitted signed by registered SC PE: Yes ☐ No ☐
- Internal high flow bypass capability around treatment/storage area (required for Type 3): Yes ☐ No ☐
 - If Yes, detailed drawing must show this flow path: Yes ☐ No ☐
 - If No, provide 3rd party test results demonstrating when scour/re-suspension occurs: Yes ☐ No ☐

Performance Evaluation Testing

- Independent 3rd party testing evaluator:
- Test facility name:
- Test facility location:
- Test ID:
- Test Date:
- Report Date:
- Signature of responsible 3rd party evaluator included on test report: Yes ☐ No ☐

Performance Evaluation Laboratory Testing Data

- Max Flow Rate at which 80% removal efficiency is achieved: cfs
- Testing Hydraulic Loading Rate (NA for Type 3):
- Particle Size Distribution (PSD) used:
 - 125-micron-mean size ☐
 - OK-110 ☐
 - F-95 Silica Sand ☐
 - Sil-Co-Sil 106 ☐
 - NJDEP PSD ☐
 - Other (describe) ☐
- Concentration of PSD (100 mg/l to 300 mg/l for MTD Type1) (1,500 mg/l to 2,000 mg/l for Type 3 3% concentration) (24,000 mg/l to 26,000 mg/l for Type 3 Street Sweepings 2.5% concentration): mg/L
- Total Suspended Solids (TSS) removal efficiency (ASTM D-3977-97 SSC): %

Scaling

- Table, chart, or graph indicating maximum water quality flow rate (WQE) for 80% TSS removal and indicating max peak flow rate (LOS) of MTD (Section 2.5 and 2.6): Yes ☐ No ☐
- MTD Type 1 Hydraulic loading rate used in MTD scaling (if > 25 gpm/SF, specific 3rd party laboratory testing must verify removal efficiency at the higher loading rate): gpm/SF

Manufacturer’s Signature:
MTD TYPE 1 & Type 2 SUBMITTAL FORM

Maximum Water Quality Event (WQE) and Maximum Level of Service (LOS) Flow Rate Table

<table>
<thead>
<tr>
<th>MTD Type 1 or 2 Name and Model Number</th>
<th>Max WQE Flow Rate (CFS)</th>
<th>WQE Removal Efficiency (%)</th>
<th>Max LOS Flow Rate (CFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MTD TYPE 3 SUBMITTAL FORM

Maximum Water Quality Flow Rate and Maximum Sediment Storage Table

<table>
<thead>
<tr>
<th>MTD Type 3 Name and Model Number</th>
<th>Max WQ Flow Rate (CFS)</th>
<th>Max Sed Storage (CF)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MTD MAINTENANCE AND RESPONSIBILITY AGREEMENT

The Permanent Stormwater System Maintenance and Responsibility Agreement requires adequate maintenance for stormwater management/Best Management Practices (BMP) facilities including Stormwater Manufactured Treatment Devices (MTDs). Document Stormwater Manufactured Treatment Devices (MTDs) deficiencies during semi-annual inspections. Complete any necessary repairs and/or preventive maintenance procedures in a timely manner to ensure proper functioning as a Stormwater Manufactured Treatment Devices (MTDs).

Important maintenance procedures:
- Inspect and maintain all MTDs in accordance with the manufacturer’s written recommendations.
- Prepare specific maintenance requirements and maintenance schedules for each MTD.
- Inspect MTDs at least semi-annually to ensure that the MTD is working properly.
- Maintain MTDs as required to maximize pollutant removal.
- Keep a maintenance log to track all MTD inspections and maintenance with the quantities of materials removed from each MTD. Lack of maintenance is the most common cause of failure for MTDs.
- Remove accumulated sediment and other trapped pollutants when the MTD becomes full. Typical removal of pollutants requires the use of a vacuum truck.
- Ensure proper site stabilization is achieved so MTDs function as designed.
- Do not use MTDs to trap eroded sediment from construction operations, unless the manufacturer has approved such use in writing.
- Install MTDs as the last stormwater runoff structures installed on site, or keep these MTDs off-line or isolated until final stabilization is achieved.

After the installation of Stormwater Manufactured Treatment Devices (MTDs), perform inspections once a quarter. Long term inspection and maintenance frequency is dependent on land use, accumulated solids, weather conditions, and specific design of the specific MTD. Keep operation and maintenance records in a known location and make them available upon request.

Perform recommended maintenance activities as follows:

<table>
<thead>
<tr>
<th>Required Maintenance</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean and remove trapped sediments, oil and grease, and other pollutants.</td>
<td>As needed.</td>
</tr>
<tr>
<td>Inspect for damage to MTD components</td>
<td>Semi-Annual Minimum</td>
</tr>
<tr>
<td>Inspect for sediment and pollutant accumulation</td>
<td>Semi-Annual Minimum</td>
</tr>
<tr>
<td>Inspect for operational inlet and outlet structures</td>
<td>Semi-Annual Minimum</td>
</tr>
</tbody>
</table>